Prof. Curio, Dr. Groot Nibbelink

Aufgabe 37 "Anomalous Zeeman-Effekt"

Betrachte ein Elektron als ein Spin-1/2 Teilchen mit Ladung -e und Energie E im magnetischen Feld $\vec{B} = B\hat{z}$. Der Hamiltonoperator dieses System zerlegt sich als $H = H_0 + W$ mit

$$W = -\vec{\mu} \cdot \vec{B}, \qquad \mu = 2\mu_B \vec{S}/\hbar$$

mit dem Bohrmagnetron $\mu_B = \frac{e\hbar}{2m}$ und \vec{S} dem Elektronspinoperator.

- a. Berechne die Energiekorrektur zur ersten Ordnung in der Störung W.
- b. Bestimme die Eigenvektoren in gleicher Ordnung. Wird die Spinentartung aufgehoben?

Aufgabe 38 "Störung eines zweidimensionalen Oszillators"

Der Hamiltonoperator eines zweidimensionalen Oszillators sei gegeben durch $H=H_0+W$ mit

$$H_0 = \frac{1}{2m} \left(p_1^2 + p_2^2 \right) + \frac{m\omega^2}{2} \left(x_1^2 + x_2^2 \right), \qquad W = \gamma \frac{m^2 \omega^3}{\hbar} x_1^2 x_2^2.$$

Wir fassen W als eine Störung auf.

- a. Bestimme die Niedrigste drei Energieeigenwerte E_0, E_1, E_2 vom ungestörten System mit Hamiltonoperator H_0 . Gib bei jedem Energiewert an, was die Entartungsgrad ist und bestimme die korrespondierender entarteter Eigenzustände.
- b. Berechne die störungstheoretische Energiekorrektur erster und zweiter Ordnung für den Grundzustand von H_0 .
- c. Berechne die Energiekorrektur erster Ordnung für das niedrigste Anregungsniveaus vom H_0 . Wird die Entartung aufgehoben?
- d. Berechne die Energiekorrektur erster Ordnung für das nächste Anregungsniveau vom H_0 . Bestimme die zugehörige Eigenvektoren.

Aufgabe 39 "Zeitabhängige Störung eines geladenen harmonischen Oszillators"

Ein geladener harmonischer Oszillator (mit Ladung q, Masse m und Kreisfrequenz ω) befinde sich zur Zeit $t_0 = -\infty$ in seinem Grundzustand. Dieser Oszillator wird an der Wirkung eines zeitabhängigen homogenen elektrischen Feldes

$$E(t) = \frac{A}{\sqrt{\pi}\tau_0} \exp\left(-\frac{t^2}{\tau_0^2}\right), \qquad A, \tau_0 > 0,$$

unterworfen.

- a. Berechne in erster Ordnung zeitabhängiger Störungstheorie die Wahrscheinlichkeit dafür, den Oszillator zur Zeit $t=\infty$ in seinem n-ten Energiezustand anzutreffen.
- b. Unter welcher Voraussetzung bzgl. der Größe von A und τ_0 ist die Beschränkung auf erste Ordnung Störungstheorie möglich?