Autor(en)
- Stephan Kulla ()
Lizenz
Dieses Werk von Stephan Kulla steht unter einer „Creative Commons Namensnennung 3.0 Deutschland-Lizenz“. Damit darfst du
- das Werk bzw. den Inhalt vervielfältigen, verbreiten und öffentlich zugänglich machen
- Abwandlungen und Bearbeitungen des Werkes bzw. Inhaltes anfertigen
Zur Verwendung musst du folgende Bedingungen einhalten:
- Namensnennung - Du musst den Autor/die Autoren nennen und ein Link auf dieses Werk setzen.
Beweisen sie folgende Eigenschaften komplexer Integrale.
Was passiert, wenn du die erste Eigenschaft auf anwendest?
Das komplexe Integral ist -linear. Das heißt, es ist für alle und für alle und .
Es gilt für alle
Zunächst gilt
und für alle
Damit ist für alle undZum Beweis dieser Eigenschaft verwenden wir die Darstellung von Integralen über Riemansche Zwischensummen. Dabei sei die charakteristische Funktion für die Menge . Damit ist